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Abstract. We present a new iterative scheme for PageRank computation. The algorithm is
applied to the linear system formulation of the problem, using inner-outer stationary iterations. It
is simple, can be easily implemented and parallelized, and requires minimal storage overhead. Our
convergence analysis shows that the algorithm is effective for a crude inner tolerance and is not
sensitive to the choice of the parameters involved. The same idea can be used as a preconditioning
technique for nonstationary schemes. Numerical examples featuring matrices of dimensions exceeding
100,000,000 in sequential and parallel environments demonstrate the merits of our technique. Our
code is available online for viewing and testing, along with several large scale examples.
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1. Introduction. PageRank [35] is a method for ranking Web pages whereby
a page’s importance (or rank) is determined according to the link structure of the
Web. This model has been used by Google as part of its search engine technology.
The exact ranking techniques and calculation methods used by Google today are no
longer public information, but the PageRank model has taken on a life of its own
and has received considerable attention in the scientific community in the last few
years. PageRank is essentially the stationary distribution vector of a Markov chain
whose transition matrix is a convex combination of the Web link graph and a certain
rank-1 matrix. A key parameter in the model is the damping factor, a scalar that
determines the weight given to the Web link graph in the model. Due to the great size
and sparsity of the matrix, methods based on decomposition are considered infeasible;
instead, iterative methods are used, where the computation is dominated by matrix-
vector products. Detailed descriptions of the problem and available algorithms can
be found in many references; see, for example, [12, 30].

In this paper we propose and investigate a new algorithm for computing the
PageRank vector. We use the linear system formulation and apply stationary inner-
outer iterations. The proposed technique is based on the observation that the smaller
the damping factor is, the easier it is to solve the problem. Hence we apply an iterative
scheme in which each iteration requires solving a linear system similar in its algebraic
structure to the original one, but with a lower damping factor. In essence, what is
proposed here is a simple preconditioning approach. We use a technique of inexact
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solves, whereby the inner iteration is solved only to a crude tolerance. The algorithm
is just a few lines long, and can be implemented and parallelized in a straightforward
fashion. We are not aware of any other PageRank algorithm that provides such an
excellent combination of minimal memory requirements and fast convergence.

The remainder of the paper is structured as follows. In section 2 we provide a
brief description of the PageRank problem. In section 3 we introduce the proposed
algorithm. Section 4 is devoted to convergence results, and we provide some guidelines
for the selection of the parameters involved. In section 5 we discuss how inner-
outer iterations can be combined with other solvers as an acceleration scheme or as a
preconditioner. Numerical examples for a few large problems are given in section 6.
Finally, in section 7 we draw some conclusions.

2. The problem of computing PageRank. The “raw” PageRank xi of page
i is defined as xi =

∑
j→i

xj

nj
, where j → i indicates that page j links to page i, and nj

is the out-degree of page j. Thus the problem in its basic form can be mathematically
formulated as follows: find a vector x that satisfies x = P̄x, where P̄ is given by

P̄ji =

{
1
ni

if i→ j,

0 if i � j.

Pages with no out-links (or, in graph terminology, out-edges) produce columns of all
zeros in P̄ ; hence P̄ is not necessarily a stochastic matrix. Replacing P̄ with

P = P̄ + udT , di =

{
1 if ni = 0,
0 otherwise

eliminates the zero columns. Here the vector u ≥ 0 is a probability vector, which
we call the dangling node vector. Now the modified matrix P is a proper stochastic
matrix. There are other alternatives to the correction udT for dealing with dangling
nodes, for example, the bounce-back model [30].

The ergodic theorem [21, Theorem 6.4.2] tells us that the stationary distribution
is unique and is the limiting distribution starting from any initial distribution if the
transition matrix is irreducible and aperiodic. In the case of PageRank, forming
a convex combination of P with a certain rank-1 matrix achieves these desirable
properties. We define

(2.1) A = αP + (1− α)veT ,

where α ∈ (0, 1) is the damping factor, e is the vector of all ones, and v is a person-
alization vector or a teleportation vector. Just like the dangling node vector u, v is a
probability vector. See [7] for a discussion about the impact of setting u �= v. It is
common practice to set u = v in the PageRank model [22, 26, 32].

The PageRank vector is defined as the vector satisfying x = Ax, with A defined
in (2.1). We note that, in general, for nonnegative v, primitivity and irreducibility
are not needed to ensure the uniqueness of the PageRank vector [37]. In terms of the
model, it is assumed that in each time step, a “random” surfer either follows a link
with probability α, or “teleports” with probability 1−α, selecting the new page from
the probability distribution given by v.

Selecting a damping factor significantly smaller than 1 allows for fast convergence
of the power method, since α is in fact the contraction factor. (The scheme converges
linearly.) In the original formulation of PageRank [35], the choice α = 0.85 was
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suggested, and the power method was applied. A higher value of α (i.e., close to 1)
yields a model that is mathematically closer to the actual link structure of the Web,
but makes the computation more difficult.

The choice of α has been explored in several papers, and seems to be application-
dependent. Values that have been widely used in the Web search literature are α =
0.85, 0.9, or 0.95 [26, 34]. Computing the limiting vector as α→ 1 is explored in [11].
There are also papers that claim that the damping factor should be significantly
smaller than 1. For example, in [2] it is claimed that α as small as 0.5 should be used,
due to the presence of strongly connected components and the bow-tie structure of
the Web; see [8] for arguments in favor of a small damping factor. PageRank-type
algorithms are used in application areas other than Web search [33, 39, 46], where the
value of α often has a concrete meaning and the graphs have a different structure that
may not resemble the bow-tie structure of the Web link graph. It is thus useful to
consider a variety of values, and in this paper we experiment with 0.85 ≤ α ≤ 0.999.

Notice that A is dense because veT is typically dense, but it is never explic-
itly formed since matrix-vector products of A with x can be efficiently computed by
imposing ‖x‖1 = 1 (or, equivalently, eTx = 1, since x is nonnegative):

(2.2) Ax = αPx+ (1 − α)v.

When the power method is used, if the initial guess has a unit 1-norm, then so do
all the iterates x throughout the iteration, and normalization does not seem neces-
sary. Nonetheless, it is often carried out in practice for large scale problems in finite
precision to improve the accuracy of the computation [45].

Since Brin and Page’s original formulation of the PageRank problem, much work
has been done by the scientific community to propose and investigate improvements
over the power method. In [26] an extrapolation method is presented, which accel-
erates convergence by calculating and then subtracting off estimates of the contribu-
tions of the second and third eigenvectors. Analysis of the spectral structure of the
PageRank matrix and interesting results and observations about the sensitivity of the
eigenvalue problem are given in [15, 37]. An Arnoldi-type technique is proposed in [19].
Other methods have been considered; see the book [30], which offers a comprehensive
survey of PageRank, the review papers [4, 29], which contain many additional results
and useful references, and the books [5, 40], which include overviews of nonnegative
matrices and Markov chains.

3. An inner-outer stationary method. We now present our new algorithm.
As is pointed out in [1, 18], since eTx = 1, from (2.2) it follows that the eigenvalue
problem Ax = x can be reformulated as a linear system:

(3.1) (I − αP )x = (1− α)v.

Suppose β is a positive scalar. The same PageRank problem with β as a damping
factor, namely (I − βP )x = (1− β)v, is easier to solve than the original problem if β
is smaller than α. This is well understood, and one way to see it is by observing that
other than the eigenvalue 1, all the eigenvalues of the matrix of (2.1) are contained
in a circle on the complex plane whose radius is equal to the damping factor [10, 15].

Inspired by the fact that the original problem is easier to solve when the damping
factor is small, let us consider the following stationary iteration for solving (3.1):

(3.2) (I − βP )xk+1 = (α − β)Pxk + (1− α)v, k = 0, 1, 2, . . . ,
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where 0 < β < α. In what follows, we will refer to (3.2) as the outer iteration.
As an initial guess we may take x0 = v, the original teleportation vector, though
other choices are possible, too. Applying (3.2) cannot be done directly since solving
a linear system with I − βP is still computationally difficult, even when β is small.
Therefore, we compute or approximate xk+1 using an inner Richardson iteration as
follows. Setting the right-hand side of (3.2) as

(3.3) f = (α− β)Pxk + (1 − α)v,

we define the inner linear system as

(3.4) (I − βP )y = f ,

and apply the inner iteration

(3.5) yj+1 = βPyj + f , j = 0, 1, 2, . . . , �− 1,

where we take y0 = xk as the initial guess and assign the computed solution y� as
the new xk+1. (The stopping criterion that determines � will be discussed below.) As
long as we have not converged to the desired PageRank vector (using a convergence
criterion related to the original, outer linear system (3.1)) we repeat the procedure,
incrementing k and then using xk as our new inner initial guess y0.

The outer iteration (3.2) is associated with the splitting

(3.6) I − αP = MO −NO, MO = I − βP, NO = (α− β)P,

and the corresponding outer iteration matrix is given by

(3.7) TO = M−1
O NO = (α− β)(I − βP )−1P.

The inner iteration (3.5) is aimed at solving MOy = f , as stated in (3.4), and is
associated with the splitting

(3.8) MO = I − βP = MI −NI , MI = I, NI = βP.

The corresponding inner iteration matrix is

(3.9) TI = M−1
I NI = βP.

To terminate the iterations, we use the 1-norm of the residuals of the outer system
(3.1) and the inner system (3.4) as stopping criteria. For the outer iteration (3.2) we
apply

‖(1− α)v − (I − αP )xk+1‖1 < τ,

and for the inner iteration (3.5) we use

‖f − (I − βP )yj+1‖1 < η.

The resulting inner-outer iteration based on the iterative formulas given in (3.2) and
(3.5) is presented in Algorithm 1. The parameters η and τ are the inner and outer
tolerances, respectively, given in the two inequalities above. We note that for the
purpose of illustrating how the computation can be efficiently done, the roles of x
and y are altered from the notation used in the text.
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Algorithm 1. Basic inner-outer iteration.

Input: P, α, β, τ, η,v
Output: x
1: x← v
2: y← Px
3: while ‖αy + (1− α)v − x‖1 ≥ τ
4: f ← (α− β)y + (1− α)v
5: repeat
6: x← f + βy
7: y← Px
8: until ‖f + βy − x‖1 < η
9: end while
10: x← αy + (1− α)v

Lines 1 and 2 of Algorithm 1 initialize x = v and y = Px. The right-hand side
of (3.2), defined as f in (3.3), is computed in line 4. The inner iteration described
in (3.5) is defined in lines 5–8. We use a repeat-until clause here since we require at
least one inner iteration to be performed. Upon exit from the inner loop, the vector x
holds the value denoted by yj+1 in (3.5).

To stop the algorithm, line 3 tests the residual of the outer linear system (3.1), and
for the inner system (3.4), the stopping criterion is in line 8. The vector (I−βP )yj+1

is given in the algorithm by x − βy, since x at this point holds yj+1 and y admits
the value of Px in line 7 (and initially in line 2). Line 10 uses the computed values to
take a single power method step at the end of the algorithm: since y = Px is already
computed, we might as well use it. (See [45] for possible benefits of using a power
method step at the end of a given algorithm.) Upon exit from the algorithm, x holds
the desired approximation to the PageRank vector.

4. Convergence analysis. The damping parameter α is assumed to be given as
part of the model, and τ is a value typically provided by the user. Thus the challenge
is to determine values of β and η that will accelerate the computation.

We note that we do not consider β = 0 or β = α, since setting β to be one of
these values would simply lead back to the power method. If β = 0, then the inner
iteration is meaningless regardless of η, and the outer iteration is equivalent to the
power method. If β = α, then the number of outer iterations is small (one iteration
if η = τ), and it would be the inner iterations this time that exactly reproduce power
iterations.

A value of η very close to zero (that is, very strict) may result in spending a
long computational time performing inner iterations, just to compute a single outer
iterate at a time. This may lead to slow convergence overall. Setting η very loose, on
the other hand, may result in inner iterates that do not sufficiently approximate the
exact solution of (3.4), and hence do not yield sufficient progress towards the desired
PageRank vector.

For β, the outer iterations converge faster if β is close to α, but the inner iterations
converge faster if β is close to zero. This is intuitively clear, and we will provide
analytical justification in section 4.2.

Our goal is, then, to find intermediate choices of β and η that reduce the overall
computational work as much as possible.
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4.1. Convergence of the outer iterations. Let us examine the outer splitting.
If we write A(α) = αP + (1 − α)veT and A(β) = βP + (1 − β)veT and notice that
A′(α) = A′(β) = P − veT (clearly, by linearity the derivative does not depend on the
damping factor), we can write

A(α) = A(β) + (α− β)A′.

Thus we can interpret the outer iteration as a procedure in which we locally solve the
PageRank problem for β rather than for α, and correct for the remainder, which is a
scalar multiple of the derivative of A. The convergence analysis that follows explains
why this methodology is effective.

Since MO = I−βP is a diagonally dominant M-matrix, convergence is guaranteed
by known results for regular splittings [42, Theorem 3.32]. Asymptotic convergence
analysis can be performed by observing that if λi is an eigenvalue of P , then

(4.1) μi =
(α− β)λi

1− βλi

is an eigenvalue of TO. Since |λi| ≤ 1, we get

|μi| =
∣∣∣∣(α− β)λi

1− βλi

∣∣∣∣ ≤ (α− β)|λi|
1− β|λi| =

α− β

|λi|−1 − β
≤ α− β

1− β
,

with equality holding for λ1 = 1, so ρ(TO) =
α−β
1−β < 1.

We note that μi in (4.1) indicates that all modes of the outer error decay if a
good choice of β is made. The decay is effective also for terms associated with the

eigenvalues of P on the unit circle, as can be seen by evaluating | (α−β)eıθ

1−βeıθ
|. For

example, in the case θ = π, which corresponds to the situation of an eigenvalue −1
(this happens if the graph has a cycle of length 2, which commonly occurs), the
factor α−β

1+β could be quite small; for instance, if α ≈ 1 and β = 1/2, this factor is

approximately 1/3, which guarantees a rapid reduction of error associated with this
eigenvalue.

Similarly to what can be done in the case of applying the power method for
computing PageRank [6], we can obtain strong convergence results that hold for each
iteration and not only asymptotically.

Lemma 4.1. Given 0 < α < 1, if the inner iterations are solved exactly, the
scheme converges for any 0 < β < α. Furthermore,

‖xk+1 − x‖1 ≤ α− β

1− β
‖xk − x‖1

and

‖xk+1 − xk‖1 ≤ α− β

1− β
‖xk − xk−1‖1,

and hence the contraction factor α−β
1−β indicates that the closer β is to α, the faster

the outer iterations converge.
Proof. By definition,

(I − βP )x = (α− β)Px + (1− α)v.
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Subtracting the above equation from (3.2), we get xk+1 − x = TO(xk − x), which
reads

xk+1 − x = (α− β)(I − βP )−1P (xk − x).

Taking 1-norms and using the triangular inequality, we have

‖xk+1 − x‖1 ≤ (α− β)‖(I − βP )−1‖1‖P‖1‖xk − x‖1.
The matrix P is column stochastic. Also, I −βP is a diagonally dominant M-matrix,
and hence its inverse is nonnegative. It follows that ‖P‖1 = 1 and ‖(I − βP )−1‖1 =
1

1−β . (The latter result can also be obtained by using the technique of [25, Lemma 5].)
This gives the first inequality in the statement of the lemma.

To obtain the second inequality, set (3.2) for k − 1, subtract it from the same
equation with k, and take norms in the same fashion.

Denote the contraction factor by gα(β) =
α−β
1−β ; then g′α(β) =

α−1
(1−β)2 is negative

for α < 1, and hence gα(β) is monotonically decreasing. Therefore, the closer β is
to α the faster the outer iterations converge, as claimed.

4.2. Convergence of the inner iterations. Let us consider the rate of conver-
gence of the inner iterations (3.5) and their dependence on the parameters α and β.
From (3.9) it trivially follows that ρ(TI) = β, and hence asymptotically, the error is
reduced by a factor of approximately β in each inner iteration. But as we showed
in the convergence analysis for the outer iteration, we can show convergence (with a
contraction factor β in this case) that is not only asymptotic. The proof of the follow-
ing lemma is straightforward and follows by taking 1-norms, applying the triangular
inequality, and using ‖P‖1 = 1.

Lemma 4.2. For the inner iterations, if y is the solution of the inner system
(3.4), then

‖yj+1 − y‖1 ≤ β‖yj − y‖1
and

‖yj+1 − yj‖1 ≤ β‖yj − yj−1‖1.

What is also interesting is the connection between a given inner iterate and the
solution of the outer problem (i.e., the PageRank vector). Define

cj = yj − x

to be this error. By the linear system formulation, x = αPx+ (1− α)v. Subtracting
this from (3.5) and using the definition of ek in (4.2) we get

cj+1 = βPyj − βPxk + αPek

= βPcj + (α− β)Pek.

Since c0 = ek, the error at the jth iterate can be expressed as a jth degree polynomial
in βP , multiplied by c0. It also follows (either from the above equality or from
Lemma 4.2) that

‖cj+1 − cj‖1 ≤ β‖cj − cj−1‖1.
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As we have mentioned, in practice we will want to accelerate convergence by
solving the inner iteration inexactly. Analysis of inner-outer stationary schemes for
solving linear systems, giving insight on possible choices of parameters and estimates
of the overall computational work, has been presented in a number of papers or books,
of which we mention [16, 17, 20, 23]. Analysis of inner-outer iterations for Krylov
subspace solvers can be found in [38]. Below we derive bounds on convergence of the
inexact iteration. We do so by using difference inequalities, adopting an approach
similar to the one taken in [16, section 2]. Given a linear system Bx = g and a
splitting B = M−N , consider a stationary scheme based on inexact solves as follows:

Mxk+1 = Nxk + g + sk,

where sk denotes a nonzero residual that measures the inexactness in the computation.
Let

(4.2) ek = xk − x

be the error in the kth iteration. Then

(4.3) ek+1 = Tek +M−1sk,

where T = M−1N . Suppose

(4.4) ‖sk‖ ≤ ζ‖ek − ek−1‖
for some ζ. Note that the bound in (4.4) is computable since ek − ek−1 = xk − xk−1.
In our algorithms we terminate the iteration by examining the residual rather than
the difference of errors.

Combining (4.3) and (4.4) we have

‖ek+1‖ ≤ ‖T ‖ ‖ek‖+ ζ‖M−1‖ ‖ek − ek−1‖.
Defining ρ = ‖T ‖ and σ = ζ‖M−1‖ and applying the triangular inequality, the
resulting inequality

‖ek+1‖ ≤ ρ‖ek‖+ σ(‖ek‖+ ‖ek−1‖)
involves a three-term relation. Let νk be the solution of the recurrence relation

νk+1 = ρνk + σ(νk + νk−1),

with ν1 = ‖e1‖ and ν2 = ‖e2‖. Then
‖ek‖ ≤ νk = a1ξ

k
+ + a2ξ

k
−,

where

ξ± =
ρ+ σ

2

(
1±

√
1 +

4σ

(ρ+ σ)2

)

and

a1 =
2(ν2 − ν1ξ−)

(ρ+ σ)2s(s+ 1)
, a2 =

2(ν2 − ν1ξ+)

(ρ+ σ)2s(s− 1)
,
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with s =
√
1 + 4σ/(ρ+ σ)2. Since ξ− < 0, we have that a1 ≥ 0 and ξ+ > |ξ−|. It

follows that

(4.5) ‖ek‖ ≤ a1ξ
k
+ + |a2||ξ−|k ≤ (a1 + |a2|)ξk+.

Hence we have a bound of the type ‖ek‖ ≤ ϑξk+, where ϑ is independent of k. The

bound (4.5) motivates us to find ζ such that ξ+ < 1. Using 1-norms, since ‖M−1
O ‖1 =

1
1−β and ‖TO‖1 = α−β

1−β , we can set ρ = α−β
1−β and σ = ζ

1−β . Defining γ = α − β and

using
√
1 + x � 1 + x

2 for x� 1, we obtain

ξ+ =
ρ+ σ

2

(
1 +

√
1 +

4σ

(ρ+ σ)2

)
� γ + ζ

1− β
+

ζ

γ + ζ
.

Requiring ξ+ < 1 yields a quadratic inequality for which it is possible to see that the
closer α is to 1, the smaller ζ must be.

In Figure 4.1 we experimentally examine how ξ+ relates to β and ζ. The graphs
show that convergence is expected for a large range of values of these parameters. It
is worth stressing that our analysis provides only sufficient (not necessary) conditions
for convergence.
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Fig. 4.1. ξ+ for α = 0.99, and various values of ζ and β. A sufficient condition for the
algorithm to converge is ξ+ < 1.

5. Inner-outer acceleration and preconditioning. The simple mechanism
of the inner-outer iterations allows for seamlessly incorporating it into other solvers as
either an acceleration scheme or a preconditioning technique. In this section we discuss
how inner-outer iterations can be combined with the power method, the Gauss–Seidel
scheme, and Krylov subspace solvers.

5.1. Inner-outer power iterations. The convergence analysis performed in
section 4 indicates that the outer iteration yields convergence rates that depend
strongly on β, and certain choices of this parameter can yield significant gains in
the initial iterates, compared to the power method. When y0 = xk is sufficiently
close to x, the inner iterations rapidly converge, and the scheme more closely re-
sembles the power method. Thus we can incorporate the following improvement to
the power method: apply the inner-outer scheme, and once the inner iterations start
converging quickly, switch back to the power method.
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The modified scheme is presented in Algorithm 2. We replace the repeat-while
inner-iteration with a for loop, so as to count the number of inner iterations. The
“power(αy+(1−α)v)” clause in line 9 means to apply the power method with αy+
(1−α)v as an initial guess, until convergence. The value of im is small and determines
the point, in terms of inner iteration count, where we switch to the power method.
If im = 1, then switching to the power method is an optimization for subsequent
iterations that saves the need to compute f and check the stopping criterion in line
8 of Algorithm 1. This optimization saves touching an extra vector in memory and
a 1-norm computation for those iterations after switching to the power method. In
our numerical experiments we adopt this version of the accelerated algorithm, i.e., we
take im = 1.

Algorithm 2. Inner-outer power iterations.

Input: P, α, β, τ, η,v, im
Output: x
1: x← v
2: y← Px
3: while ‖αy + (1− α)v − x‖1 ≥ τ
4: f ← (α− β)y + (1− α)v
5: for i = 1, . . . repeat
6: x← f + βy
7: y← Px
8: until ‖f + βy − x‖1 < η
9: if i ≤ im, x=power(αy + (1− α)v); return
10: end while
11: x← αy + (1− α)v

It is useful to consider the computational cost involved in applying this scheme.
Let us ignore operations between scalars. The quantity αy + (1 − α)v is computed
once per outer iteration and is used in lines 3 and 4 of Algorithm 2. It is also used
upon entering line 9 to execute the power method until convergence. The vector
f + βy is computed once per inner iteration and is used in lines 6 and 8. Once the
above mentioned vectors have been computed, lines 3 and 4 involve two additional
SAXPY operations and a 1-norm computation. The operations inside the inner loop
include a computation of Px (line 7 in Algorithm 2), which typically accounts for the
most computationally costly component. The computation of Px involves more than
a mere matrix-vector product, because, for dealing with dangling nodes, our matrix
is in fact of the form P = P̄ + vdT , as explained in section 2. We note that in large
scale settings, it may be helpful to perform an extra normalization operation, to avoid
loss of accuracy; see [45].

5.2. Inner-outer Gauss–Seidel iterations. The performance of Gauss–Seidel
applied to the PageRank linear system (I − αP )x = (1− α)v is considered excellent,
given its modest memory requirements. It often converges in roughly half the number
of power method iterations. However, from a practical point of view, two pitfalls of
the method are that it requires the matrix P by rows (i.e., the graph by in-edges) and
it does not parallelize well.

We can accelerate Gauss–Seidel using inner-outer iterations as follows. Our
Gauss–Seidel codes implement the dangling correction to the matrix P̄ implicitly
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and match those in the law toolkit [43]. To convert the inner-outer method to use
Gauss–Seidel, we replace the inner Richardson iteration (3.5) with a Gauss–Seidel
iteration. In our pseudocode, presented in Algorithm 3, the gssweep(x, A,b) function
implements xk+1 = M−1

GS(NGSxk + b) in-place for a Gauss–Seidel splitting of the
matrix A. The Gauss–Seidel-pr function in line 7 of the algorithm refers to the stan-
dard “Gauss–Seidel for PageRank” scheme. This algorithm requires only two vectors
of storage because x is always updated in-place. Details on the performance of this
algorithm are provided in section 6.

Algorithm 3. Inner-outer/Gauss–Seidel iteration.

Input: P, α, β, τ, η,v
Output: x
1: x← v
2: y← Px
3: while ‖αy + (1− α)v − x‖1 ≥ τ
4: f ← (α− β)y + (1− α)v
5: for i = 1, . . .
6: x, δ ← gssweep(x, I − βP, f) {δ = ‖xi+1 − xi‖1}
7: until δ < η
8: if i=1, Gauss–Seidel-pr(x, I − αP, (1 − α)v); break
9: y← Px
10: end repeat

5.3. Preconditioning for nonstationary schemes. Thus far we have exam-
ined the inner-outer algorithm as a stationary iteration. In this section we switch our
viewpoint and examine it as a preconditioner for a nonstationary iteration. As such,
we will be mainly interested in how well the eigenvalues of the preconditioned matrix
are clustered.

Consider an approximation of (I − βP̄ )−1 as a preconditioner for the PageRank
linear system (I − αP̄ ). Gleich, Zhukov, and Berkhin [18] and Del Corso, Gulĺı, and
Romani [13] examined the behavior of Krylov subspace methods on the system

(5.1) (I − αP̄ )y = (1 − α)v,

and concluded, as is generally expected, that preconditioning is essential for the linear
system formulation of the PageRank problem. Their preconditioners were incomplete
factorizations or factorizations of diagonal blocks of the matrix, both of which modify
the matrix data structure.

The system in (5.1) is different from the system in (3.1) because we use P̄ instead
of P . But the solutions of the two systems are proportional if u = v. (Recall from
section 2 that u is the dangling nodes vector and v is the personalization vector.)
In case of equality, we have x = y/‖y‖

1
. A proof is given in [30, Theorem 7.2.1],

and for completeness we provide the main details below. Indeed, (I − αP )x = [I −
α(P̄ + vdT )]x, and therefore (I − αP̄ )x = (1 − α + γ)v, where γ = αdTx. Suppose
ϕ = 1−α

1−α+γ . Then, rescaling the above system by ϕ, we get

(I − αP̄ ) (ϕx)︸︷︷︸
y

= (1− α)v.
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Since I − αP̄ is nonsingular, we must have a unique solution. We have y = ϕx, and
hence y must be positive. Using eTx = 1 it follows that ϕ = eTy = ‖y‖1, and hence
x = y/‖y‖1 as claimed.

We switch to the alternate formulation with P̄ for two primary reasons: it con-
verged more often in our experience (we have no insight into why this occurs); and
the behavior of Krylov methods has been empirically studied more often on this for-
mulation of the system. However, this setting is more restrictive than what has been
discussed and analyzed in previous sections, and it remains to be tested to what ex-
tent it applies for the general case where the dangling node vector is not related to
the personalization vector. That said, the PageRank problem formulation with P̄ , as
in (5.1), has received considerable attention in the literature [22, 32]. We note also
that there are models such as GeneRank [33], in which the initial matrix is assumed
to be column stochastic and the formulation is equivalent to the one we consider in
this section.

For β near α, the preconditioned system is as difficult to solve as the original
linear system. We thus consider a Neumann series approximation, which is practically
equivalent to a Richardson approach as in the basic inner-outer iteration:

(I − βP̄ )−1 ≈ I + βP̄ + (βP̄ )2 + · · ·+ (βP̄ )m.

Since β < 1 and ‖P̄‖1 = 1, this approximation converges as m→∞, and it gives rise
to an implementation that uses only matrix-vector multiplies with P̄ and avoids costly
(or even impossible) modification of the matrix structure. Details on the performance
of this approach are provided in section 6.

6. Numerical experiments. We have implemented the power method, inner-
outer iteration (Algorithms 1 and 2), Gauss–Seidel method, and Gauss–Seidel inner-
outer method (Algorithm 3) in pure MATLAB, MATLAB mex, and C++.

Using the data enumerated in Table 6.1, we evaluated these implementations in a
wide range of experimental situations. The initial guess, the dangling node vector u,
and the teleportation distribution v for every method is the uniform distribution,
x0 = (1/n)e, where e is a vector of all ones. We use these specific choices since they
are commonly used. When we state a speedup, we use relative percentage gain

(6.1)
vr − vt

vr
· 100% ,

where vr is a reference performance and vt is a test performance. The reference
performance is either the power method or the Gauss–Seidel method. All solution
vectors satisfy the residual tolerance

‖αPxk + (1− α)v − xk‖1 < τ,

where τ is specified in the experiment description. Thus we are able to directly
compare all the methods in terms of total work and time. Parallel, large scale
(arabic-2005, sk-2005, and uk-2007), and C++ tests were run on an 8-core (4 dual-
core chips) 2.8 GHz Opteron 8220 computer with 128 GB of RAM. MATLAB mex

tests were run on a 4-core (2 dual-core chips) 3.0 GHz Intel Xeon 5160 computer with
16 GB of RAM.

6.1. Implementations. Due to the great size of Web link graphs, matrix stor-
age is a primary consideration in the design of PageRank solvers. Web crawlers
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Table 6.1

Dimensions and number of nonzeros of a few test matrices.

Name Size Nonzeros Average
nonzeros
per row

ubc-cs-2006 51,681 673,010 13.0
ubc-2006 339,147 4,203,811 12.4
eu-2005 862,664 19,235,140 22.3
in-2004 1,382,908 16,917,053 12.2
wb-edu 9,845,725 57,156,537 5.8
arabic-2005 22,744,080 639,999,458 28.1
sk-2005 50,636,154 1,949,412,601 38.5
uk-2007 105,896,555 3,738,733,648 35.3

collect graphs by storing the out-edges of each node and thus solvers that work with
only out-edges are the most natural. Storing out-edges is equivalent to storing the
nonzero structure P̄ by columns. Furthermore, storing the out-edges makes the simple
random-walk normalization of the matrix entries possible by storing only the matrix
nonzero structure. That is, it is sufficient to store only the indices of adjacent ver-
tices, equivalently the nonzero row numbers for a column, rather than store integer
or floating point nonzero values as well.

Both the power method and the inner-outer iteration work only with out-edges
because they require only (stochastic) matrix-vector products. In contrast, standard
Gauss–Seidel-based methods require access to the matrix P̄ by rows or the in-edges
of the graph. To get rows of the matrix P̄ when storing just the matrix nonzero
structure requires an extra length-n vector to store the out-degree counts for each
node. While this vector could be a 4-byte integer for all our matrices, we observed
a performance advantage when storing the inverse out-degree in a vector of 8-byte
doubles. We also observed a slight performance increase when storing the graph by
in-edges for the power method. This advantage was more pronounced in the multicore
algorithms and we discuss why in section 6.4. We implemented our C++ codes to
work with the matrix stored by either out- or in-edges and we always state which
version we used for a particular performance time. The C++ codes work only with
Web graphs compressed into bvgraph data structures [9]. Our experience indicates
that manipulating these data structures causes a 2–4x slowdown, but yields enormous
memory savings (e.g., running the power method on uk-2007 takes 2.9 GB of RAM).
Due to speed considerations, our MATLAB implementations store P̄T instead of P̄
— this choice corresponds to storing the graph by in-edges.

6.2. Inner-outer parameters. Results for the inner-outer method applied to
the in-2004 matrix are presented in Figure 6.1. On the left-hand graph we see that,
for too loose an inner tolerance η, there is only a narrow range of values of β for which
the inner-outer method converges much more quickly than the power method; see the
convergence graph for η = 0.1. When η is very strict the overall computational work
is large for almost all values of β, due to a large number of inner iterations; see the
graph for η = 10−5. Significant gains are observed for moderate values of η; see, for
example, the graph for η = 0.01. In this case, the performance of the scheme is not
sensitive to the choice of β. We have observed a similar behavior for our other test
matrices: choosing η ≈ 10−2 and 0.4 � β � 0.8 has in most cases led to accelerated
convergence.
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Fig. 6.1. Total number of matrix-vector products required for convergence of the inner-outer
scheme, for the in-2004 matrix. (τ = 10−7, α = 0.99, β, and η varied. The iteration limit is 1500
and causes the ceiling on the left figure.)
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Fig. 6.2. Convergence of the computation for the 9, 845, 725 × 9, 845, 725 wb-edu matrix (τ =
10−7, β = 0.5, and η = 10−2 in the inner-outer method). The interior figures highlight the first few
iterations.

The right-hand graph in Figure 6.1 shows a similar behavior for various fixed
values of β, with η varying. The conclusion is that moderate values of both β and η
often significantly reduce the overall computational work and are fairly insensitive to
small perturbations. Our experiments use the choice η = 10−2 and β = 0.5.

In Figure 6.2 we plot the norms of the residuals for both methods run on the large
wb-edu matrix for two values of α. The gains in the inner-outer method are often
made in the initial iterates, and the gains are most significant when α = 0.99 and the
outer tolerance is loose. This can be observed in Figure 6.2, where for τ = 10−3 we
have a relative gain of 41%. When the outer tolerance is stricter (10−7), the inner-
outer scheme achieves a relative gain of less than 3% for α = 0.85 (72 matrix-vector
products compared to 74 for the power method), which is marginal. On the other
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Table 6.2

Total number of matrix-vector products and wall-clock time required for convergence to three
different outer tolerances τ , and the corresponding relative gains defined by (6.1). The parameters
used here are α = 0.99, β = 0.5, η = 10−2. For the first five graphs, we used the MATLAB mex

codes, and for the final three large graphs we used the C++ codes, where the graph is stored by
out-edges and the times refer to the performance of an 8-core parallel code.

Tol. Graph Work (mults.) Time (secs.)

Power In/out Gain Power In/out Gain

10−3 ubc-cs-2006 226 141 37.6% 1.9 1.2 35.2%
ubc 242 141 41.7% 13.6 8.3 38.4%
in-2004 232 129 44.4% 51.1 30.4 40.5%
eu-2005 149 150 −0.7% 26.9 28.3 −5.3%
wb-edu 221 130 41.2% 291.2 184.6 36.6%

arabic-2005 213 139 34.7% 779.2 502.5 35.5%
sk-2005 156 144 7.7% 1718.2 1595.9 7.1%
uk-2007 145 125 13.8% 2802.0 2359.3 15.8%

10−5 ubc-cs-2006 574 432 24.7% 4.7 3.6 22.9%
ubc 676 484 28.4% 37.7 27.8 26.2%
in-2004 657 428 34.9% 144.3 97.5 32.4%
eu-2005 499 476 4.6% 89.3 87.4 2.1%
wb-edu 647 417 35.5% 850.6 572.0 32.8%

arabic-2005 638 466 27.0% 2333.5 1670.0 28.4%
sk-2005 523 460 12.0% 5729.0 5077.1 11.4%
uk-2007 531 463 12.8% 10225.8 8661.9 15.3%

10−7 ubc-cs-2006 986 815 17.3% 8.0 6.8 15.4%
ubc 1121 856 23.6% 62.5 49.0 21.6%
in-2004 1108 795 28.2% 243.1 179.8 26.0%
eu-2005 896 814 9.2% 159.9 148.6 7.1%
wb-edu 1096 777 29.1% 1442.9 1059.0 26.6%

arabic-2005 1083 843 22.2% 3958.8 3012.9 23.9%
sk-2005 951 828 12.9% 10393.3 9122.9 12.2%
uk-2007 964 857 11.1% 18559.2 16016.7 13.7%

hand, when α = 0.99 the inner-outer stationary method achieves a substantial relative
gain of 29%: 319 fewer matrix-vector products than 1096.

From Table 6.2 we can see that for the other matrices the savings range from
9% to 28% for τ = 10−7, and from −1% to 44% for τ = 10−3. The eu-2005 matrix
shows one case where the overhead in the initial inner iterations causes convergence
to slow down. Even though it has a one iteration disadvantage, it seems the improved
convergence of the power method after the inner iterations accelerates the method
as the residual continues to decrease. Comparing the savings in iteration counts to
the savings in CPU time confirms that the overhead per iteration introduced by the
inner-outer method (section 5) is small compared to the overall computational gain,
and thus it pays off.

For all the graphs, the inner iteration counts per iteration decrease monotonically
down to a single iteration quickly. For eu-2005 with α = 0.99, it takes 24 inner iter-
ations within 9 outer iterations, until the inner iterates start converging immediately,
at which point we switch to the power method. We observed similar performance for
the other graphs.

6.3. Inner-outer Gauss–Seidel. We present our comparison for the Gauss–
Seidel method in Table 6.3. Rather than matrix-vector multiplications, the results
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Table 6.3

Results from the Gauss–Seidel inner-outer method compared with the Gauss–Seidel method.
Total number of Gauss–Seidel sweep iterations (equivalent in work to one matrix-vector multiply)
and wall-clock time required for convergence, and the corresponding relative gains defined by (6.1).
The parameters used here are β = 0.5 and η = 10−2, and we used MATLAB mex codes. The
convergence tolerance was 10−7.

α Graph Work (sweeps.) Time (secs.)

GS In/out Gain GS In/out Gain

0.99 ubc-cs-2006 562 492 12.5% 2.9 2.7 7.0%
ubc 566 503 11.1% 19.5 18.0 7.7%
in-2004 473 469 0.8% 65.9 67.3 −2.2%
eu-2005 439 462 −5.2% 56.6 60.4 −6.6%
wb-edu 450 464 −3.1% 357.9 380.0 −6.2%

0.999 ubc-cs-2006 4430 3576 19.3% 19.8 16.8 14.9%
ubc 4597 3646 20.7% 141.6 113.8 19.7%
in-2004 3668 3147 14.2% 451.1 391.0 13.3%
eu-2005 3197 3159 1.2% 354.8 352.4 0.7%
wb-edu 3571 3139 12.1% 2532.5 2249.0 11.2%

are measured in sweeps through the matrix. The work for a single sweep is roughly
equivalent to a single matrix-vector multiplication. For α = 0.99, the inner-outer
iteration accelerates only two of our smallest test graphs. Increasing α to 0.999 and
using a strict τ shows that the inner-outer method also accelerates Gauss–Seidel-based
codes.

We have not invested effort in optimizing the scheme in this case; our experiments
are intended only to show that the inner-outer idea is promising in combination with
other high-performance PageRank techniques. We believe that an analysis of the sort
that we have performed for the Richardson iteration in the previous sections may
point out a choice of parameters that could further improve convergence properties
for the inner-outer scheme combined with Gauss–Seidel.

6.4. Parallel speedup. Parallel PageRank algorithms take many forms [18,
28, 32, 36]. Our implementation substitutes OpenMP shared memory operations
for the linear algebra operations norm, AXPY, and the matrix-vector multiply. We
implemented two versions of the parallel code to manipulate the graph stored by
out-edges (the natural order) or by in-edges (the Gauss–Seidel order).

Boldi and Vigna’s bvgraph structure [9] efficiently iterates over the edges emanat-
ing from a vertex for a fixed ordering of the nodes. These could be either out- or in-
edges, depending on how the graph is stored. To implement the parallel matrix-vector
multiply for p processors, we make one pass through the file and store p−1 locations in
the structure that roughly divide the edges of the graph evenly between p processors.
When the graph is stored by out-edges, the serial matrix-vector operation is

xi=x[i]/degree(i); for (j in edges of i) { y[j]+=xi; },

which has writes to arbitrary and possibly overlapping locations in memory. In the
OpenMP version, the update of y becomes the atomic operation

xi=x[i]/degree(i); for (j in edges of i) { atomic(y[j]+=xi); }.
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Fig. 6.3. Parallel scalability for the three large graphs arabic-2005, sk-2005, and uk-2007

with the matrix stored by out-edges (left) and in-edges (right). Light gray or dark gray lines are the
relative speedup compared with the same algorithm on one processor. Black lines are the true speedup
compared with the best single processor code. At the right of each subfigure is a small enlargement of
the 8 processor results. The parameters were α = 0.99, β = 0.5, and η = 10−2. In this plot, speedup
is the ratio vr/vt.

When the graph is stored by in-edges, the original serial update works without mod-
ification as the processors never write to the same location in the vector y.

We evaluated a few variants of the matrix-vector multiplication when the graph
is stored by out-edges and found that the atomic operation variant has similar perfor-
mance to storing a separate y vector for each processor and aggregating the vectors
at the end of the operation. Variants that replaced separate y vectors with separate
hash tables were slower in our tests.

Figure 6.3 demonstrates the scalability of the codes when storing the graph by
out- and in-edges. In the figure, we distinguish between relative and true speedup.
Relative speedup is the time on p processors compared with the time on 1 processor for
the same algorithm. True speedup is the time on p processors compared with the best
time on 1 processor. The higher relative speedup of methods based on the in-edges
of the graph (6–7x) compared to out-edge methods (5–6x) demonstrates that in-edge
algorithms are more scalable. In light of the atomic operation in out-edge methods,
this parallelization difference is not surprising. No consistent differences appear when
comparing the relative speedup of the inner-outer method and the power method.
Consequently, we assume that these methods parallelize similarly and compare true
speedup.

For an out-edge graph, the true speedup and relative speedup are similar. In
contrast, the relative speedup for an in-edge graph is much higher than the true
speedup. Gauss–Seidel causes this effect, since it is the fastest method on an in-edge
graph and so the true speedup of most methods starts at around 0.5, a 50% slowdown.
With one exception, the inner-outer methods (dashed lines) all demonstrate a higher
true speedup than the power method.

6.5. Preconditioning. We evaluate (I − βP̄ )−1 or its Neumann series approx-
imation as a preconditioner (see section 5.3) by examining eigenvalue clustering and
matrix-vector multiplies.
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To understand the preconditioner’s effect on the convergence of Krylov subspace
methods, we look at the clustering of eigenvalues of the matrix (I − βP̄ )−1(I − αP̄ ).
Let λi, i = 1, . . . , n be the eigenvalues of P̄ . If we solved the preconditioned iteration
defined by (I−βP̄ )−1 exactly, then the eigenvalues of the matrix P̄ undergo a Möbius
transform to the eigenvalues of the preconditioned system

(6.2) p(λ) =
1− αλ

1− βλ
.

When we precondition with only a finite number of terms, the modification of the
eigenvalues is no longer a Möbius transform but the polynomial

(6.3) pm(λ) = (1 − αλ)(1 + βλ+ · · ·+ (βλ)m).

Of course as m→∞, we recover the exact preconditioned system.
To illustrate the spectral properties of the preconditioned system, Figure 6.4 shows

the behavior of the preconditioned eigenvalues of two test matrices, for a variety of
choices of β andm. In these examples, our preconditioner concentrates the eigenvalues
around λ = 1. Solving the system exactly appears unnecessary as we see a strong
concentration even with m = 2 or m = 4 terms of the Neumann series for the values
of β we tested.

Gleich, Zhukov, and Berkhin [18] and Del Corso, Gulĺı, and Romani [13] explored
the performance of preconditioned BiCG-STAB on the PageRank system. We have
modified the MATLAB implementation of BiCG-STAB to use the 1-norm of the
residual as the stopping criterion.

To compare against the power method and Gauss–Seidel, the normalized solution
vectors x = y/‖y‖1 always satisfy

‖αPx+ (1− α)v − x‖1 ≤ τ.

This criterion is equivalent to taking one step of the power method and checking the
difference in iterations. Consequently, all the solution vectors tested are at least as
accurate as the vectors computed in the power method with tolerance τ . In practice,
we did not test the previous solution criteria at every iteration and instead modified
the MATLAB BiCG-STAB function to terminate the computation when the 1-norm
of the residual was less than (

√
1− α)τ . Empirically, using (

√
1− α)τ as the tolerance

to BiCG-STAB yielded y’s that satisfied our actual tolerance criteria without a full
rewrite of the residual computations.

BiCG-STAB diverges or breaks down on in-2004 without preconditioning for
α = 0.99; see Table 6.4. This matches observations by Del Corso, Gulĺı, and Ro-
mani [13] that Krylov methods often have convergence problems. Adding the precon-
ditioner with m = 2 and β ≥ 0.5 avoids these break-down cases. The remainder of
the table shows that preconditioning accelerates convergence in many cases for “rea-
sonable” parameter choices. Among the methods discussed, BiCG-STAB with this
preconditioner converges in the fewest number of matrix-vector multiplications on the
in-2004 graph with α = 0.99 and α = 0.999. However, the cost per iteration is higher.

6.6. Other applications. The IsoRank algorithm [39] is a heuristic to solve
the network alignment problem. Given two graphs, A and B, the goal in the network
alignment problem is to find a match for each vertex of graph A in B and vice versa.
The resulting matching should maximize the number of cases where i in A is mapped
to j in B, i′ in A is mapped to j′ in B, and both of the edges (i, i′) ∈ A and (j, j′) ∈ B



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AN INNER-OUTER ITERATION FOR COMPUTING PAGERANK 367

harvard500

m = 0 m = 2 m = 4 m = 7 m = ∞

β 
= 

0.
50

β 
= 

0.
70

β 
= 

0.
85

wb-cs.stanford

m = 0 m = 2 m = 4 m = 7 m = ∞

β 
= 

0.
50

β 
= 

0.
70

β 
= 

0.
85

Fig. 6.4. For the matrices harvard500 and wb-cs.stanford with α = 0.99, this figure plots
the eigenvalues of the preconditioned matrix (I − βP̄ )−1(I − αP̄ ) and approximations based on
Neumann series. Each dashed circle encloses a circle of radius 1 in the complex plane centered at
λ = 1, and hence the scale is the same in each small figure. Gray lines are contours of the function
pm(λ) defined in (6.3), which is the identity matrix for m = 0 (i.e., no preconditioning) and the
exact inverse when m = ∞. The dots are the eigenvalues of the preconditioned system, pm(λi).
Interlacing contours of pm(λ) demonstrate that this function is not 1–1 for λ : |1− λ| ≤ 1.
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Table 6.4

Matrix-vector products required for BiCG-STAB on in-2004, including preconditioning and
residual computations, to converge on the system (I−αP̄ ) with preconditioner

∑m
k=0(βP )k. A dash

indicates that the method made progress but did not converge to a tolerance of (
√
1− α)10−7 in

the maximum number of iterations required for the power method (100 for α = 0.85, ≈ 1500 for
α = 0.99, and ≈ 15000 for α = 0.999), and an × indicates that the method diverged or broke down.
When m = 0, there is no preconditioning and the results are independent of β.

α
0.85 0.99 0.999

β β β
m 0.25 0.50 0.75 0.85 0.25 0.50 0.75 0.85 0.25 0.50 0.75 0.85

0 102 102 102 102 × × × × × × × ×
2 128 88 76 76 1140 672 508 500 × 6276 3972 2772
4 186 120 84 78 1584 786 438 414 × 5178 2358 2112
7 — 207 108 72 2565 1053 621 441 × 9567 2709 1449
25 — — — 81 — — 1809 1026 — 20385 7911 2754

exist. This objective alone is NP-hard. Often there are weights for possible matches
(e.g., Vji for i in A and j in B) that should bias the results towards these matchings,
and hence the objective also includes a term to maximize these weights.

Let P and Q be the uniform random-walk transition matrices for A and B, re-
spectively. Also, let the weights in V be normalized so that eTV e = 1 and Vij ≥ 0.
IsoRank uses the PageRank vector

x = α(P ⊗Q)x+ (1− α)v,

where the teleportation vector v = vec(V ) encodes the weights and α indicates how
much emphasis to place on matches using the weights’ information. Thus the IsoRank
algorithm is a case when v is not uniform, and α has a more concrete meaning. For
a protein-matching problem, it is observed experimentally in [39] that values of α
between 0.7 and 0.95 yield good results.

We look at a case when A is the 2-core of the undirected graph of subject headings
from the Library of Congress [41] (abbreviated LCSH-2) and B is the 3-core of the
undirected Wikipedia category structure [44] (abbreviated WC-3). One of the authors
previously used these datasets in analyzing the actual matches in a slightly different
setting [3]. The size of these datasets is reported in Table 6.5. For this application,
the weights come from a text-matching procedure on the labels of the two graphs.

Table 6.5

The size of non-Web datasets. The product graph is never formed explicitly.

Dataset Size Nonzeros

LCSH-2 59,849 227,464
WC-3 70,509 403,960

Product graph 4,219,893,141 91,886,357,440

In this experiment, we do not investigate all the issues involved in using a heuristic
to an NP-hard problem and focus on the performance of the inner-outer algorithm in
a non-Web ranking context. Without any parameter optimization (i.e., using β = 0.5
and η = 10−2), the inner-outer scheme shows a significant performance advantage, as
demonstrated in Table 6.6.
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Table 6.6

The performance of the inner-outer (β = 0.5, η = 10−2) and power iterations on non-Web
data with α = 0.95, τ = 10−7, and v sparse and nonuniform. The computations were done in pure
MATLAB.

Inner-outer 188 mat-vec 36.2 hours
Power 271 mat-vec 54.6 hours

7. Conclusions. We have presented an inner-outer iterative algorithm for ac-
celerating PageRank computations. Our algorithm is simple, fast, and introduces
minimal overhead. It is tailored to the PageRank problem, exploiting the fact that all
the eigenvalues of the matrix except the eigenvalue 1 are enclosed within a circle in
the complex plane whose radius equals the damping factor, and hence it is beneficial
to iterate with a small damping factor. Because no permutations, projections, orthog-
onalizations, or decompositions of any sort are involved, programming the algorithm
is completely straightforward, and it is highly parallelizable.

There are a variety of PageRank optimizations which manipulate the Web link
graph. For example, dangling node optimizations [14, 24, 30, 31] and matrix-vector
product acceleration [27] further reduce the work performed in an iteration. Our inner-
outer iterations, by their nature, can be integrated with these solution methodologies
in a straightforward fashion.

The inner-outer algorithm is parameter-dependent, but an effective choice of the
parameters can be made, as our analysis shows. We have provided a detailed con-
vergence analysis and have shown analytically and experimentally that the proposed
technique is effective for a large range of inner tolerances. Observing that the gains
are often made in the initial iterates, we have also introduced a hybrid scheme that
switches to the power method once the inner iterations start converging immediately.

In principle, any iterative solver that is effective for the linear system formu-
lation of PageRank computation can have inner-outer iterations incorporated into
it and possibly accelerate convergence. We have demonstrated this in detail for the
Richardson-type scheme that is equivalent to applying the power method to the eigen-
value problem, a Gauss–Seidel method, and preconditioned BiCG-STAB iterations.
For nonstationary schemes it is natural to think of our approach as a preconditioning
technique.

Our scheme compares favorably with other widely used schemes, not only in
terms of performance but also in terms of the availability of a straightforward, easily
reproducible implementation. For example, consider the well-known quadratic ex-
trapolation scheme [26]. Our inner-outer method has a few distinct advantages over
it. It is simpler and has lower space requirements, since it involves only three working
vectors (x,y, f in Algorithms 1 and 2). Also, the issue of how often to apply the
acceleration scheme is less delicate, and is covered by our analysis.

Optimizing inner-outer iterations to make them work effectively with Gauss–
Seidel and nonstationary schemes requires further fine-tuning. But as our results
show, the performance of the algorithm is consistently strong. Given its simplicity
and modest memory requirements, it is currently our solver of choice for PageRank
solvers, among many solvers we have tested.

Future work may include investigating how to dynamically determine the pa-
rameters β and η, and exploring the performance of the algorithm as an acceleration
technique for a variety of methods of PageRank computation. Also, the convergence of
the inner-outer algorithm seems to be fairly insensitive to the presence of eigenvalues
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of P not equal to 1 on the unit circle, but validating this analytically and numerically
is subject to future investigation.

Finally, there are a number of applications based on random walks, which are
similar in spirit to PageRank. They deal with social networks, peer-to-peer networks,
and other problems, and many of them are extremely large. It will be interesting
to explore the effectiveness of inner-outer iterations for large scale applications other
than PageRank.

Our code is available to download and test at
http://www.stanford.edu/˜dgleich/publications/2009/innout/.
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[16] H. C. Elman and G. H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point
problems, SIAM J. Numer. Anal., 31 (1994), pp. 1645–1661.

[17] E. Giladi, G. H. Golub, and J. B. Keller, Inner and outer iterations for the Chebyshev
algorithm, SIAM J. Numer. Anal., 35 (1998), pp. 300–319.

[18] D. Gleich, L. Zhukov, and P. Berkhin, Fast Parallel PageRank: A Linear System Ap-
proach, Yahoo! Research Technical Report YRL-2004-038, available online from http://
research.yahoo.com/publication/YRL-2004-038.pdf, 2004.

[19] G. H. Golub and C. Greif, An Arnoldi-type algorithm for computing PageRank, BIT, 46
(2006), pp. 759–771.

[20] G. H. Golub and M. L. Overton, The convergence of inexact Chebyshev and Richardson
iterative methods for solving linear systems, Numer. Math., 53 (1988), pp. 571–593.

[21] G. Grimmett and D. Stirzaker, Probability and Random Processes, 3rd ed., Oxford Univer-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AN INNER-OUTER ITERATION FOR COMPUTING PAGERANK 371

sity Press, Oxford, UK, 2001.
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